Electrical studies on biopolyurethane from cashew nut husk tannin

Author:

Sunija A.J.,Siva Ilango S.,Vinod Kumar K.P

Abstract

Purpose – This paper aims to focus on the evaluation of the electrical properties of bio-based polyurethane material derived from cashew nut husk tannin and also the effect of temperature and frequency on the dielectric values and alternate current (AC) conductivity. Design/methodology/approach – Bio-based polyurethane is prepared from cashew nut husk tannin as polyol, their dielectric constant and dielectric loss factor are measured using an inductance capacitance resistance (LCR) metre, and the AC conductivity is determined using dielectric constant and loss values. Findings – The dielectric constant values are high, and the values decrease with an increase in frequency but increase with an increase in temperature. The AC conductivity values are low; hence, the material can be categorized as insulators or semi-conductors. Because the polyurethanes have a good dielectric value and are cost-effective, as they are derived from renewable biomaterial waste, they have promising applications for the future. Research limitations/implications – The experiment is carried out up to the frequency of 200 KHz because of the limitation in the instrument. But for the institute of printed circuits (IPC) and other specifications, the values of dielectric loss and dielectric constant will be generally coated for 1 MHz. Practical implications – The high dielectric constant and loss values show that the polyurethane can be opted for use as capacitors in electronic devices, and the values are comparable to the requirements of IPC4101A/24IPC; hence, they are suitable for the application as printed circuit board (PCB) laminate. Social implications – The use of biomaterial waste in the production of polyurethane will bring down the dependence of polyurethane industry on fossil fuel reserve, reduce carbon dioxide foot print and reduce the cost of production. Originality/value – The motivation of the work was its ecological aspect and also aims on the use of an alternative bio-based material in the PCB industry.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3