Abstract
PurposeSampling taxpayers for audits has always been a major concern for policymakers of tax administration. The purpose of this study is to propose a systematic method to select a small number of taxpayers with a high probability of tax fraud.Design/methodology/approachAn efficient sampling method for taxpayers for an audit is investigated in the context of a property acquisition tax. An autoencoder, a popular unsupervised learning algorithm, is applied to 2,228 tax returns, and reconstruction errors are calculated to determine the probability of tax deficiencies for each return. The reasonableness of the estimated reconstruction errors is verified using the Apriori algorithm, a well-known marketing tool for identifying patterns in purchased item sets.FindingsThe sorted reconstruction scores are reasonably consistent with actual fraudulent/non-fraudulent cases, indicating that the reconstruction errors can be utilized to select suspected taxpayers for an audit in a cost-effective manner.Originality/valueThe proposed deep learning-based approach is expected to be applied in a real-world tax administration, promoting voluntary compliance of taxpayers, and reinforcing the self-assessing acquisition tax system.
Subject
Library and Information Sciences,Information Systems
Reference40 articles.
1. Fast algorithms for mining association rules,1994
2. Real time detection of acoustic anomalies in industrial processes using sequential autoencoders;Expert Systems,2021
3. Orchid: a novel management, annotation and machine learning framework for analyzing cancer mutations;Bioinformatics,2018
4. A close‐up comparison of the misclassification error distance and the adjusted Rand index for external clustering evaluation;British Journal of Mathematical and Statistical Psychology,2021
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献