Improving anti-money laundering in bitcoin using evolving graph convolutions and deep neural decision forest

Author:

Mohan AnurajORCID,P.V. KarthikaORCID,Sankar ParvathiORCID,Manohar K. MayaORCID,Peter AmalaORCID

Abstract

PurposeMoney laundering is the process of concealing unlawfully obtained funds by presenting them as coming from a legitimate source. Criminals use crypto money laundering to hide the illicit origin of funds using a variety of methods. The most simplified form of bitcoin money laundering leans hard on the fact that transactions made in cryptocurrencies are pseudonymous, but open data gives more power to investigators and enables the crowdsourcing of forensic analysis. With the motive to curb these illegal activities, there exist various rules, policies and technologies collectively known as anti-money laundering (AML) tools. When properly implemented, AML restrictions reduce the negative effects of illegal economic activity while also promoting financial market integrity and stability, but these bear high costs for institutions. The purpose of this work is to motivate the opportunity to reconcile the cause of safety with that of financial inclusion, bearing in mind the limitations of the available data. The authors use the Elliptic dataset; to the best of the authors' knowledge, this is the largest labelled transaction dataset publicly available in any cryptocurrency.Design/methodology/approachAML in bitcoin can be modelled as a node classification task in dynamic networks. In this work, graph convolutional decision forest will be introduced, which combines the potentialities of evolving graph convolutional network and deep neural decision forest (DNDF). This model will be used to classify the unknown transactions in the Elliptic dataset. Additionally, the application of knowledge distillation (KD) over the proposed approach gives finest results compared to all the other experimented techniques.FindingsThe importance of utilising a concatenation between dynamic graph learning and ensemble feature learning is demonstrated in this work. The results show the superiority of the proposed model to classify the illicit transactions in the Elliptic dataset. Experiments also show that the results can be further improved when the system is fine-tuned using a KD framework.Originality/valueExisting works used either ensemble learning or dynamic graph learning to tackle the problem of AML in bitcoin. The proposed model provides a novel view to combine the power of random forest with dynamic graph learning methods. Furthermore, the work also demonstrates the advantage of KD in improving the performance of the whole system.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference36 articles.

1. Comparative analysis using supervised learning methods for anti-money laundering in bitcoin,2020

2. Competence of graph convolutional networks for anti-money laundering in bitcoin blockchain,2020

3. Bhagat, S., Cormode, G. and Muthukrishnan, S. (2011), “Node classification in social networks”, in Social Network Data Analytics, Springer, Boston, MA, pp. 115-148.

4. Spectral networks and locally connected networks on graphs,2013

5. Bitcoin and money laundering: mining for an effective solution;Indiana Law Journal,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3