Abstract
PurposeThe traditional failure mode and effect analysis (FMEA) has some limitations, such as the neglect of relevant historical data, subjective use of rating numbering and the less rationality and accuracy of the Risk Priority Number. The current study proposes a machine learning–enhanced FMEA (ML-FMEA) method based on a popular machine learning tool, Waikato environment for knowledge analysis (WEKA).Design/methodology/approachThis work uses the collected FMEA historical data to predict the probability of component/product failure risk by machine learning based on different commonly used classifiers. To compare the correct classification rate of ML-FMEA based on different classifiers, the 10-fold cross-validation is employed. Moreover, the prediction error is estimated by repeated experiments with different random seeds under varying initialization settings. Finally, the case of the submersible pump in Bhattacharjee et al. (2020) is utilized to test the performance of the proposed method.FindingsThe results show that ML-FMEA, based on most of the commonly used classifiers, outperforms the Bhattacharjee model. For example, the ML-FMEA based on Random Committee improves the correct classification rate from 77.47 to 90.09 per cent and area under the curve of receiver operating characteristic curve (ROC) from 80.9 to 91.8 per cent, respectively.Originality/valueThe proposed method not only enables the decision-maker to use the historical failure data and predict the probability of the risk of failure but also may pave a new way for the application of machine learning techniques in FMEA.
Subject
Library and Information Sciences,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献