AEROTHERMODYNAMIC ANALYSIS FOR AXISYMMETRIC PROJECTILES AT SUPERSONIC/HYPERSONIC SPEEDS

Author:

NUSCA MICHAEL J.

Abstract

An aerothermodynamic design code for axisymmetric projectiles has been developed using a viscous‐inviscid interaction scheme. Separate solution procedures for the inviscid and the viscous (boundary layer) fluid dynamic equations are coupled by an iterative solution procedure. Non‐equilibrium, equilibrium and perfect gas boundary layer equations are included. The non‐equilibrium gas boundary layer equations assume a binary mixture (two species; atoms and molecules) of chemically reacting perfect gases. Conservation equations for each species include finite reaction rates applicable to high temperature air. The equilibrium gas boundary layer equations assume infinite rate reactions, while the perfect gas equations assume no chemical reactions. Projectile near‐wall and surface flow profiles (velocity, pressure, density, temperature and heat transfer) representing converged solutions to both the inviscid and viscous equations can be obtained in less than two minutes on minicomputers. A technique for computing local reverse flow regions is included. Computations for yawed projectiles are accomplished using a coordinate system transformation technique that is valid for small angle‐of‐attack. Computed surface pressure, heat transfer rates and aerodynamic forces and moments for 1.25 &le Mach No. &le 10.5 are compared to wind tunnel and free flight measurements on flat plate, blunt‐cone, and projectile geometries such as a cone‐cylinder‐flare.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference41 articles.

1. July 1963;Murphy C. H.

2. Dec. 1987;Celmins I.

3. June 1990;Jones G. R.

4. Feb. 1991;Contractor

5. Ram accelerator - A new chemical method for accelerating projectilesto ultrahigh velocities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3