QoS aware web service selection using orthogonal array learning on fruit fly optimization approach

Author:

Chandra Manik,Niyogi Rajdeep

Abstract

Purpose This paper aims to solve the web service selection problem using an efficient meta-heuristic algorithm. The problem of selecting a set of web services from a large-scale service environment (web service repository) while maintaining Quality-of-Service (QoS), is referred to as web service selection (WSS). With the explosive growth of internet services, managing and selecting the proper services (or say web service) has become a pertinent research issue. Design/methodology/approach In this paper, to address WSS problem, the authors propose a new modified fruit fly optimization approach, called orthogonal array-based learning in fruit fly optimizer (OL-FOA). In OL-FOA, they adopt a chaotic map to initialize the population; they add the adaptive DE/best/2mutation operator to improve the exploration capability of the fruit fly approach; and finally, to improve the efficiency of the search process (by reducing the search space), the authors use the orthogonal learning mechanism. Findings To test the efficiency of the proposed approach, a test suite of 2500 web services is chosen from the public repository. To establish the competitiveness of the proposed approach, it compared against four other meta-heuristic approaches (including classical as well as state-of-the-art), namely, fruit fly optimization (FOA), differential evolution (DE), modified artificial bee colony algorithm (mABC) and global-best ABC (GABC). The empirical results show that the proposed approach outperforms its counterparts in terms of response time, latency, availability and reliability. Originality/value In this paper, the authors have developed a population-based novel approach (OL-FOA) for the QoS aware web services selection (WSS). To justify the results, the authors compared against four other meta-heuristic approaches (including classical as well as state-of-the-art), namely, fruit fly optimization (FOA), differential evolution (DE), modified artificial bee colony algorithm (mABC) and global-best ABC (GABC) over the four QoS parameter response time, latency, availability and reliability. The authors found that the approach outperforms overall competitive approaches. To satisfy all objective simultaneously, the authors would like to extend this approach in the frame of multi-objective WSS optimization problem. Further, this is declared that this paper is not submitted to any other journal or under review.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference39 articles.

1. Investigating web services on the world wide web,2008

2. Opposition chaotic fitness mutation based adaptive inertia weight bpso for featureselection in text clustering;Applied Soft Computing,2016

3. A survey on metaheuristics for stochastic combinatorial optimization;Natural Computing,2009

4. A survey on services composition languages and models,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. De la computación pervasiva a los sistemas de información pervasivos;Investigación Bibliotecológica: archivonomía, bibliotecología e información;2024-02-21

2. An Adaptive Fruit Fly Optimization Algorithm for Optimization Problems;Journal of Applied Mathematics and Physics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3