Soft computing based audio signal analysis for accident prediction

Author:

Valiveti Hima Bindu,B. Anil Kumar,Duggineni Lakshmi Chaitanya,Namburu Swetha,Kuraparthi Swaraja

Abstract

Purpose Road accidents, an inadvertent mishap can be detected automatically and alerts sent instantly with the collaboration of image processing techniques and on-road video surveillance systems. However, to rely exclusively on visual information especially under adverse conditions like night times, dark areas and unfavourable weather conditions such as snowfall, rain, and fog which result in faint visibility lead to incertitude. The main goal of the proposed work is certainty of accident occurrence. Design/methodology/approach The authors of this work propose a method for detecting road accidents by analyzing audio signals to identify hazardous situations such as tire skidding and car crashes. The motive of this project is to build a simple and complete audio event detection system using signal feature extraction methods to improve its detection accuracy. The experimental analysis is carried out on a publicly available real time data-set consisting of audio samples like car crashes and tire skidding. The Temporal features of the recorded audio signal like Energy Volume Zero Crossing Rate 28ZCR2529 and the Spectral features like Spectral Centroid Spectral Spread Spectral Roll of factor Spectral Flux the Psychoacoustic features Energy Sub Bands ratio and Gammatonegram are computed. The extracted features are pre-processed and trained and tested using Support Vector Machine (SVM) and K-nearest neighborhood (KNN) classification algorithms for exact prediction of the accident occurrence for various SNR ranges. The combination of Gammatonegram with Temporal and Spectral features of the validates to be superior compared to the existing detection techniques. Findings Temporal, Spectral, Psychoacoustic features, gammetonegram of the recorded audio signal are extracted. A High level vector is generated based on centroid and the extracted features are classified with the help of machine learning algorithms like SVM, KNN and DT. The audio samples collected have varied SNR ranges and the accuracy of the classification algorithms is thoroughly tested. Practical implications Denoising of the audio samples for perfect feature extraction was a tedious chore. Originality/value The existing literature cites extraction of Temporal and Spectral features and then the application of classification algorithms. For perfect classification, the authors have chosen to construct a high level vector from all the four extracted Temporal, Spectral, Psycho acoustic and Gammetonegram features. The classification algorithms are employed on samples collected at varied SNR ranges.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference22 articles.

1. Automatic detection and classification of audio events for road surveillance applications;Sensors,2018

2. Accident detection and reporting system using GPS, GPRS and GSM technology,2012

3. Performance of deep neural networks in audio surveillance,2018

4. Identify the user presence by GLRT and NP detection criteria in cognitive radio spectrum sensing;International Journal of Communication Systems,2019

5. Audio surveillance using a bag of aural words classifier,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Accident Detection and Reporting System Using Edge Computing and Convolutional Neural Networks with Integration of GPS for Public Safety;Lecture Notes in Electrical Engineering;2024

2. Intellectual Parking Using OpenCV and Image Processing;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

3. Automatic Billing and Tracking System using IoT;2023 8th International Conference on Communication and Electronics Systems (ICCES);2023-06-01

4. Prototype for Smart Crop Protection Against Wild Animals;2023 8th International Conference on Communication and Electronics Systems (ICCES);2023-06-01

5. Soft Computing Techniques for Driver Alertness;Journal of Physics: Conference Series;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3