The effect of memory and stiffness on energy ratios at the interface of distinct media

Author:

Barak M.S.ORCID,Kumar Rajesh,Kumar Rajneesh,Gupta VipinORCID

Abstract

PurposeThis paper aims to study the energy ratios of plane waves on an imperfect interface of elastic half-space (EHS) and orthotropic piezothermoelastic half-space (OPHS).Design/methodology/approachThe dual-phase lag (DPL) theory with memory-dependent derivatives is employed to study the variation of energy ratios at the imperfect interface.FindingsA plane longitudinal wave (P) or transversal wave (SV) propagates through EHS and strikes at the interface. As a result, two waves are reflected, and four waves are transmitted, as shown in Figure 2. The amplitude ratios are determined by imperfect boundaries having normal stiffness and transverse stiffness. The variation of energy ratios is computed numerically for a particular model of graphite (EHS)/cadmium selenide (OPHS) and depicted graphically against the angle of incidence to consider the effect of stiffness parameters, memory and kernel functions.Research limitations/implicationsThe energy distribution of incident P or SV waves among various reflected and transmitted waves, as well as the interaction of waves for imperfect interface (IIF), normal stiffness interface (NSIF), transverse stiffness interface (TSIF), and welded contact interface (WCIF), are important factors to consider when studying seismic wave behavior.Practical implicationsThe present model may be used in various disciplines, such as high-energy particle physics, earthquake engineering, nuclear fusion, aeronautics, soil dynamics and other areas where memory-dependent derivative and phase delays are significant.Originality/valueIn a variety of technical and geophysical scenarios, wave propagation in an elastic/piezothermoelastic medium with varying magnetic fields, initial stress, temperature, porosity, etc., gives important information regarding the presence of new and modified waves.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3