Research progress of automatic grasping methods for garment fabrics

Author:

Wang JianpingORCID,Shen JinzhuORCID,Yao XiaofengORCID,Zhang Fan

Abstract

Purpose The purpose of this paper is to gain an in-depth understanding into the research progress, hot spots and future trends in smart gripping technology in the field of apparel smart manufacturing.Design/methodology/approach This work scrutinised the current research status of the five automatic grasping methods for garment fabrics including the pneumatic suction grasping, the electrostatic grasping, the intrusive grasping and the dexterous grasping. Specifically, the principles, characteristics, main devices and the impact on garment production were discussed.Findings In particular, soft finger of the dexterous grasping method has good flexibility and adaptability in the process of fabric grasping, which provides a new solution for garment production automation. Up to now, the reviewed method in general exhibit good grasping speed, high grasping stability and flat grasping process. However, in the face of complex fabric materials which are thin and flexible and do not return their original shapes when deformed in practical applications, the gripper for automatic fabric grasping need new technological breakthroughs in the positioning accuracy, grab efficiency and flexible grasping.Originality/value The outcomes offered an overview of the research status and future trends of the automatic grasping methods for garment fabrics in the field of apparel intelligent manufacturing. It could not only provide scholars with convenience in identifying research hot spots and building potential cooperation in the follow-up research but also assist beginners in searching core scholars and literature of great significance.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Reference50 articles.

1. A robotic end-effector with rolling up mechanism for pick-and-release of a cotton sheet;Robomech Journal,2020

2. Theoretical modeling of Coanda ejectors;Fluid Machinery,1993

3. A grasping-centered analysis for cloth manipulation;Ieee Transactions on Robotics,2020

4. Theoretical and practical aspects of the Coandă effect applied in aeronautics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3