Simulation and prediction of seam puckering in the layers of woven fabrics using a yarn-level model

Author:

Kargar Motahareh,Payvandy PedramORCID

Abstract

PurposeSimulating the behavior of clothing has always been of interest in the apparel, fashion and computer game industries. With the development of these industries, there is a need to increase the accuracy of clothing simulation techniques. A garment contains many seams whose behavior affects its final appearance. In this study, a numerical model is presented to simulate seam puckers in single- and double-layer fabrics.Design/methodology/approachA yarn-level simulation technique has been used for this purpose. Based on this technique, the individual threads in the fabric structure and the sewing threads are modeled separately. Then, their behavior and interaction with each other are considered in the seam pucker model.FindingsThe model is used to simulate the real samples. The results show that the proposed model is able to simulate the degree of seam puckering for a single-layer fabric with an average error of 7.9% and for a double-layer fabric with an average error of 8.5%.Originality/valueThe behavior of the seam is affected by the properties, behavior and interaction of the sewing threads and yarns in the fabric structure. In previous studies, the parameters related to seams and fabrics were not fully considered. In this study, a new yarn-level model is presented to simulate seam puckering in woven fabrics. The most important advantage of this type of simulation is the ability to examine the interaction of fabric threads as well as the interaction of sewing threads with each other and with the threads of the fabric structure.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Reference23 articles.

1. A model of seam pucker and its applications Part I: theoretical;The Journal of The Textile Institute,2019

2. A model of seam pucker and its applications. Part II: experimental;The Journal of The Textile Institute,2019

3. Large steps in cloth simulation;Siggraph,1998

4. Discrete elastic rods;ACM Transactions on Graphics,2008

5. Objective evaluation method for sewing flatness of worsted wool fabrics;Textile Research Journal,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3