Author:
Some Shitendu,Guha Sisir Kumar
Abstract
Purpose
In the application of hydrostatic double-layered porous journal bearings, instability of bearing systems is a major problem. On the other hand, the use of non-Newtonian fluid as a lubricant is more practical in the present days. Furthermore, in case of porous bearing, neglecting slip effect and percolation effect of additives into the pores may lead to erroneous result. Hence, this paper aims to present the linear stability analysis of finite hydrostatic double-layered porous journal bearings lubricated with coupled-stress lubricant with tangential velocity slip and percolation effect.
Design/methodology/approach
First, considering the tangential velocity slip, the most general modified Reynolds-type equation has been derived for the film region and the governing equations for flow in the coarse and fine layers of porous medium incorporating the percolation effect. A linearized first-order perturbation method has been applied to obtain the threshold of stability in terms of critical mass parameter. The effect of various parameters on the stability is investigated and represented in the form of graphs. Furthermore, a comparison between the stability of double- and single-layered porous journal bearings has been exhibited.
Findings
In this paper, threshold of stability has been obtained in terms of critical mass parameter. The effect of slip coefficient, percolation factor, coupled-stress parameter, eccentricity ratio and bearing feeding parameter on the stability has been found.
Originality/value
There is no literature available so far that addresses the analysis of the linear stability of externally pressurized double-layered porous journal bearings with slip flow, including the percolation effect under coupled-stress lubrication. But in this paper, all these points are included which made this paper valuable in design purpose.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献