Author:
Wadi Valéry Tusambila,Özmen Özkan,Caliskan Abdullah,Karamış Mehmet Baki
Abstract
Purpose
This paper aims to evaluate the dynamic viscosity and thermal conductivity of halloysite nanotubes (HNTs) suspended in SAE 5W40 using machine learning methods (MLMs).
Design/methodology/approach
A two-step method with surfactant was selected to prepare nanolubricants in concentrations of 0.025, 0.05, 0.1 and 0.5 wt%. Thermal conductivity and dynamic viscosity of nanofluids were ascertained over the temperature range of 25–70 °C, with an increment step of 5 °C, using a KD2-Pro analyser device and a digital viscometer MRC VIS-8. Additionally, four different MLMs, including Gaussian process regression (GPR), artificial neural network (ANN), support vector machine (SVM) and decision tree (DT), were used for predicting dynamic viscosity and thermal conductivity by using nanoparticle concentration and temperature as input parameters.
Findings
According to the achieved results, the dynamic viscosity and thermal conductivity of nanolubricants mostly increased with the rise of nanoparticle concentration in the base oil. All the proposed models, especially GPR with root mean square error mean values of 0.0047 for dynamic viscosity and 0.0016 for thermal conductivity, basically showed superior ability and stability to estimate the viscosity and thermal conductivity of nanolubricants.
Practical implications
The results of this paper could contribute to optimising the cost and time required for modelling the thermophysical properties of lubricants.
Originality/value
To the best of the author’s knowledge, in this available literature, there is no paper dealing with experimental study and prediction of dynamic viscosity and thermal conductivity of HNTs-based nanolubricant using GPR, ANN, SVM and DT.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献