Study the behaviour of transient elastohydrodynamic lubrication contact at motion start-up in the presence of surface roughness

Author:

Abd Alsamieh Mohamed

Abstract

Purpose This study aims to present a numerical solution for the analysis of the influence of surface roughness as presented by a sinusoidal ripple of different amplitude and wavelength on the performance of transient elastohydrodynamic lubrication at motion start-up under different operational parameters of entraining speed and load as well as different acceleration rates. Design/methodology/approach A statistical asperity micro-contact model represented by a sinusoidal ripple expressed by two parameters (wavelength and undeformed amplitude) is considered. The ball equation of motion is used to calculate the force on the ball as it starts to move. The time-dependent Reynolds equation is solved together with surface deformation and statistical asperity models using the Newton–Raphson technique with the Gauss–Seidel iteration method. Findings The behaviour of the film thickness was found to be strongly influenced by the acceleration rate for different ripple amplitude and wavelength parameters. The effect of increasing the final entraining speed will eventually lead to rapid film thickness build-up and increase the film thickness jump at the moment of motion start-up. The effect of increasing applied load is to reduce the deviation of the minimum film thickness jump at the start-up of motion, making its value approximately equal to the steady-state value over the entire run-time period. Originality/value Influence of surface roughness for various wavelength and undeformed amplitude on the performance of transient elastohydrodynamic lubrication at motion start-up is presented at different acceleration rates as well as for different operating parameters of entraining speed and load. Ball equation of motion is used to calculate the force on the ball as it starts to move.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3