Tribological behaviour of low-pressure plasma sprayed WC-Co coatings at elevated temperatures

Author:

Geng Zhe,Huang Huadong,Lu Baoshan,Wu Shaohua,Shi Gaolian

Abstract

Purpose This paper aims to investigate the effect of coating microstructure, mechanical and oxidation property on the tribological behaviour of low-pressure plasma spraying (LPPS) tungsten carbide/cobalt (WC-Co) coatings. Design/methodology/approach WC-12Co and WC-17Co coatings were deposited via the LPPS spraying method. Tribological tests on the coatings were performed using a high-temperature ball-on-disc tribometer at temperatures from room temperature (RT, approximately 25 °C) up to 800 °C in ambient air. Findings WC-12Co coating contained brittle phases, pores and microcracks, which led to the low hardness, and finally promoted the splat delamination and the carbide debonding during wear. WC-17Co coating had higher cobalt content which benefited the coating to contain more WC particles, less brittle phases, pores and nearly no microcracks, and resulted in the high hardness and better wear resistance. Higher cobalt content also decelerated the oxidation rate of the coating and promoted the formation of cobalt oxides and CoWO4, which were able to maintain the load-bearing capacity and improve the tribological behaviour of the coating below 650°C. Above 650°C, the increase of oxidation degree and the decrease of mechanical property deteriorated the wear resistance of coatings. Originality/value The LPPS WC-Co coating with higher cobalt content had better tribological properties at different temperatures. The LPPS WC-Co coatings should not be used as wear-resistant coatings above 650 °C.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3