Unfolding the potential of the ARIMA model in forecasting maize production in Tanzania

Author:

Lwaho Joseph,Ilembo BahatiORCID

Abstract

PurposeThis paper was set to develop a model for forecasting maize production in Tanzania using the autoregressive integrated moving average (ARIMA) approach. The aim is to forecast future production of maize for the next 10 years to help identify the population at risk of food insecurity and quantify the anticipated maize shortage.Design/methodology/approachAnnual historical data on maize production (hg/ha) from 1961 to 2021 obtained from the FAOSTAT database were used. The ARIMA method is a robust framework for forecasting time-series data with non-seasonal components. The model was selected based on the Akaike Information Criteria corrected (AICc) minimum values and maximum log-likelihood. Model adequacy was checked using plots of residuals and the Ljung-Box test.FindingsThe results suggest that ARIMA (1,1,1) is the most suitable model to forecast maize production in Tanzania. The selected model proved efficient in forecasting maize production in the coming years and is recommended for application.Originality/valueThe study used partially processed secondary data to fit for Time series analysis using ARIMA (1,1,1) and hence reliable and conclusive results.

Publisher

Emerald

Reference29 articles.

1. Forecasting cereal crops production using time series analysis in Ethiopia;Journal of the Saudi Society of Agricultural Sciences,2023

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3