Advanced process planning for subtractive rapid prototyping

Author:

Petrzelka Joseph E.,Frank Matthew C.

Abstract

PurposeSubtractive rapid prototyping (SRP) uses layer‐based removal from a plurality of orientations in order to create geometry in a highly automated manner. However, unlike additive means, the method can be inefficient due to redundant cutting operations on previously machined regions. The purpose of this paper is to present process planning methods for SRP, specifically dealing with stock material management in multiple setup operations.Design/methodology/approachAnalysis of remaining stock material was performed by considering slices of respective stereolithography (STL) models. Further, an initial approximation was made of accessibility to enable iterative visibility analysis. The combination of these approaches led to efficient and fast algorithms. After analysis, the slices could be converted back to useful STL models through polyhedral reconstruction.FindingsThis method of approximation yields results similar to exact geometry. Using remaining stock data from this approach leads to a significant reduction in tool path length and processing time in SRP.Originality/valueThis paper presents novel methods of geometric representation and inaccessible volume calculation for four‐axis layer‐based machining and shows a successful implementation in an SRP system.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3