An organically modified montmorillonite/nylon‐12 composite powder for selective laser sintering

Author:

Yan C.Z.,Shi Y.S.,Yang J.S.,Liu J.H.

Abstract

PurposeThe purpose of this paper is to reinforce the selective laser sintering (SLS) parts of nylon‐12 using organically modified montmorillonite (OMMT).Design/methodology/approachA dissolution‐precipitation process is developed to prepare an OMMT/nylon‐12 composite powder (3 wt% OMMT). X‐ray diffraction (XRD) was used to characterize nanostructure features. The dispersion of OMMT in the nylon‐12 matrix was observed by scanning electron microscope (SEM). The effect of OMMT on the thermal properties of nylon‐12 was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The mechanical properties of the SLS parts made from the composite powder and neat nylon‐12 powder were measured and compared.FindingsThe X‐ray diffraction and SEM results indicate that the OMMT is intercalated by nylon‐12 molecular chains and uniformly dispersed in the nylon‐12 matrix during the dissolution‐precipitation process, and thus the OMMT/nylon‐12 intercalated nanocomposites are formed. The DSC and TGA results show that the OMMT can increase the melting enthalpy, relative crystalline content, crystallization temperature and thermal stability of nylon‐12. The tensile strength, tensile modulus, flexural strength, flexural modulus and impact strength of the SLS specimens made from the composite powder are 23.2, 31.7, 18.7, 32.4 and 8.4 percent higher than those of neat nylon‐12 SLS specimens, respectively, while the elongation at break decreases by 17.5 percent.Research limitations/implicationsThe conclusion of forming intercalated nanocomposites was drawn from the XRD results in the present work. Further work should be done to observe the nanostructures of the materials by transmission electron microscope.Originality/valueA dissolution‐precipitation process was used to prepare OMMT/nylon‐12 composite powders for SLS process. During the preparation process the OMMT could be intercalated by nylon‐12 molecular chains and uniformly dispersed in the nylon‐12 matrix, thus forming the OMMT/nylon‐12 intercalated nanocomposites. Therefore, the mechanical and thermal properties of nylon‐12 SLS parts were enhanced.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3