Time-dependent metrics to assess performance prediction systems

Author:

Ben Soussia AmalORCID,Labba ChahrazedORCID,Roussanaly AzimORCID,Boyer Anne

Abstract

PurposeThe goal is to assess performance prediction systems (PPS) that are used to assist at-risk learners.Design/methodology/approachThe authors propose time-dependent metrics including earliness and stability. The authors investigate the relationships between the various temporal metrics and the precision metrics in order to identify the key earliness points in the prediction process. Authors propose an algorithm for computing earliness. Furthermore, the authors propose using an earliness-stability score (ESS) to investigate the relationship between the earliness of a classifier and its stability. The ESS is used to examine the trade-off between only time-dependent metrics. The aim is to compare its use to the earliness-accuracy score (EAS).FindingsStability and accuracy are proportional when the system's accuracy increases or decreases over time. However, when the accuracy stagnates or varies slightly, the system's stability is decreasing rather than stagnating. As a result, the use of ESS and EAS is complementary and allows for a better definition of the point of earliness in time by studying the relation-ship between earliness and accuracy on the one hand and earliness and stability on the other.Originality/valueWhen evaluating the performance of PPS, the temporal dimension is an important factor that is overlooked by traditional measures current metrics are not well suited to assessing PPS’s ability to predict correctly at the earliest, as well as monitoring predictions stability and evolution over time. Thus, in this work, the authors propose time-dependent metrics, including earliness, stability and the trade-offs, with objective to assess PPS over time.

Publisher

Emerald

Subject

Computer Science Applications,Education

Reference16 articles.

1. Predicting at-risk students at different percentages of course length for early intervention using machine learning models;IEEE Access,2021

2. Using learning analytics to develop early-warning system for at-risk students;International Journal of Educational Technology in Higher Education,2019

3. An early warning system to detect at-risk students in online higher education;Applied Sciences,2020

4. An in-depth methodology to predict at-risk learners,2021

5. Assess performance prediction systems (beyond precision indicators),2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Achieving optimal trade-off for student dropout prediction with multi-objective reinforcement learning;PeerJ Computer Science;2024-04-30

2. Applied Data Science for Leasing Score Prediction;2023 IEEE International Conference on Big Data (BigData);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3