Deep learning based approach to unstructured record linkage

Author:

Jurek-Loughrey Anna

Abstract

Purpose In the world of big data, data integration technology is crucial for maximising the capability of data-driven decision-making. Integrating data from multiple sources drastically expands the power of information and allows us to address questions that are impossible to answer using a single data source. Record Linkage (RL) is a task of identifying and linking records from multiple sources that describe the same real world object (e.g. person), and it plays a crucial role in the data integration process. RL is challenging, as it is uncommon for different data sources to share a unique identifier. Hence, the records must be matched based on the comparison of their corresponding values. Most of the existing RL techniques assume that records across different data sources are structured and represented by the same scheme (i.e. set of attributes). Given the increasing amount of heterogeneous data sources, those assumptions are rather unrealistic. The purpose of this paper is to propose a novel RL model for unstructured data. Design/methodology/approach In the previous work (Jurek-Loughrey, 2020), the authors proposed a novel approach to linking unstructured data based on the application of the Siamese Multilayer Perceptron model. It was demonstrated that the method performed on par with other approaches that make constraining assumptions regarding the data. This paper expands the previous work originally presented at iiWAS2020 [16] by exploring new architectures of the Siamese Neural Network, which improves the generalisation of the RL model and makes it less sensitive to parameter selection. Findings The experimental results confirm that the new Autoencoder-based architecture of the Siamese Neural Network obtains better results in comparison to the Siamese Multilayer Perceptron model proposed in (Jurek et al., 2020). Better results have been achieved in three out of four data sets. Furthermore, it has been demonstrated that the second proposed (hybrid) architecture based on integrating the Siamese Autoencoder with a Multilayer Perceptron model, makes the model more stable in terms of the parameter selection. Originality/value To address the problem of unstructured RL, this paper presents a new deep learning based approach to improve the generalisation of the Siamese Multilayer Preceptron model and make is less sensitive to parameter selection.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference33 articles.

1. Adaptive name matching in information integration;IEEE Intelligent Systems,2003

2. Signature verification using a ‘siamese’ time delay neural network;In: Advances in Neural Information Processing Systems,1994

3. A survey of indexing techniques for scalable record linkage and deduplication;IEEE Transactions on Knowledge and Data Engineering,2012

4. A comparison of string metrics for matching names and records;In Kdd Workshop on Data Cleaning and Object Consolidation,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3