Web-aided data set expansion in deep learning: evaluating trainable activation functions in ResNet for improved image classification

Author:

Zhang Zhiqiang,Li Xiaoming,Xu Xinyi,Lu Chengjie,Yang Yihe,Shi Zhiyong

Abstract

Purpose The purpose of this study is to explore the potential of trainable activation functions to enhance the performance of deep neural networks, specifically ResNet architectures, in the task of image classification. By introducing activation functions that adapt during training, the authors aim to determine whether such flexibility can lead to improved learning outcomes and generalization capabilities compared to static activation functions like ReLU. This research seeks to provide insights into how dynamic nonlinearities might influence deep learning models' efficiency and accuracy in handling complex image data sets. Design/methodology/approach This research integrates three novel trainable activation functions – CosLU, DELU and ReLUN – into various ResNet-n architectures, where “n” denotes the number of convolutional layers. Using CIFAR-10 and CIFAR-100 data sets, the authors conducted a comparative study to assess the impact of these functions on image classification accuracy. The approach included modifying the traditional ResNet models by replacing their static activation functions with the trainable variants, allowing for dynamic adaptation during training. The performance was evaluated based on accuracy metrics and loss profiles across different network depths. Findings The findings indicate that trainable activation functions, particularly CosLU, can significantly enhance the performance of deep learning models, outperforming the traditional ReLU in deeper network configurations on the CIFAR-10 data set. CosLU showed the highest improvement in accuracy, whereas DELU and ReLUN offered varying levels of performance enhancements. These functions also demonstrated potential in reducing overfitting and improving model generalization across more complex data sets like CIFAR-100, suggesting that the adaptability of activation functions plays a crucial role in the training dynamics of deep neural networks. Originality/value This study contributes to the field of deep learning by introducing and evaluating the impact of three novel trainable activation functions within widely used ResNet architectures. Unlike previous works that primarily focused on static activation functions, this research demonstrates that incorporating trainable nonlinearities can lead to significant improvements in model performance and adaptability. The introduction of CosLU, DELU and ReLUN provides a new pathway for enhancing the flexibility and efficiency of neural networks, potentially setting a new standard for future deep learning applications in image classification and beyond.

Publisher

Emerald

Reference28 articles.

1. A survey on modern trainable activation functions;Neural Networks,2021

2. Efficient global optimization of Two-Layer ReLU networks: quadratic-time algorithms and adversarial training;SIAM Journal on Mathematics of Data Science,2023

3. Trainable nonlinear reaction-diffusion: a flexible framework for fast and effective image restoration;IEEE Transactions on Pattern Analysis and Machine Intelligence,2016

4. Dynamic relu,2020

5. Fast and accurate deep network learning by exponential linear units (ELUs),2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3