Various approaches to text representation for named entity disambiguation

Author:

Lašek Ivo,Vojtáš Peter

Abstract

PurposeThe purpose of this paper is to focus on the problem of named entity disambiguation. The paper disambiguates named entities on a very detailed level. To each entity is assigned a concrete identifier of a corresponding Wikipedia article describing the entity.Design/methodology/approachFor such a fine‐grained disambiguation a correct representation of the context is crucial. The authors compare various context representations: bag of words representation, linguistic representation and structured co‐occurrence representation. Models for each representation are described and evaluated. They also investigate the possibilities of multilingual named entity disambiguation.FindingsBased on this evaluation, the structured co‐occurrence representation provides the best disambiguation results. It showed up that this method could be successfully applied also on other languages, not only on English.Research limitations/implicationsDespite its good results the structured co‐occurrence context representation has several limitations. It trades precision for recall, which might not be desirable in some use cases. Also it is not able to disambiguate two different types of entities, which are mentioned under the same name in the same text. These limitations can be overcome by combination with other described methods.Practical implicationsThe authors provide a ready‐made web service, which can be directly plugged in existing applications using a REST interface.Originality/valueThe paper proposes a new approach to named entity disambiguation exploiting various context representation models (bag of words, linguistic and structural representation). The authors constructed a comprehensive dataset based on all English Wikipedia articles for named entity disambiguation. They evaluated and compared the individual context representation models on this dataset. They evaluate the support of multiple languages.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A retrospective of knowledge graphs;Frontiers of Computer Science;2016-09-26

2. Handling Uncertainty in Relation Extraction;Proceedings of the 8th International Conference on Knowledge Capture;2015-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3