Abstract
PurposeIn this paper, the authors emphasize that COVID-19 pandemic is a serious pandemic as it continues to cause deaths and long-term health effects, followed by the most prolonged crisis in the 21st century and has disrupted supply chains globally. This study questions “can technological inputs such as big data analytics help to restore strength and resilience to supply chains post COVID-19 pandemic?”; toward which authors identified risks associated with purchasing and supply chain management by using a hypothetical model to achieve supply chain resilience through big data analytics.Design/methodology/approachThe hypothetical model is tested by using the partial least squares structural equation modeling (PLS-SEM) technique on the primary data collected from the manufacturing industries.FindingsIt is found that big data analytics tools can be used to help to restore and to increase resilience to supply chains. Internal risk management capabilities were developed during the COVID-19 pandemic that increased the company's external risk management capabilities.Practical implicationsThe findings provide valuable insights in ways to achieve improved competitive advantage and to build internal and external capabilities and competencies for developing more resilient and viable supply chains.Originality/valueTo the best of authors' knowledge, the model is unique and this work advances literature on supply chain resilience.
Subject
Transportation,Business and International Management
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献