How big data analytics can help manufacturing companies strengthen supply chain resilience in the context of the COVID-19 pandemic

Author:

Bag SurajitORCID,Dhamija PavitraORCID,Luthra SunilORCID,Huisingh Donald

Abstract

PurposeIn this paper, the authors emphasize that COVID-19 pandemic is a serious pandemic as it continues to cause deaths and long-term health effects, followed by the most prolonged crisis in the 21st century and has disrupted supply chains globally. This study questions “can technological inputs such as big data analytics help to restore strength and resilience to supply chains post COVID-19 pandemic?”; toward which authors identified risks associated with purchasing and supply chain management by using a hypothetical model to achieve supply chain resilience through big data analytics.Design/methodology/approachThe hypothetical model is tested by using the partial least squares structural equation modeling (PLS-SEM) technique on the primary data collected from the manufacturing industries.FindingsIt is found that big data analytics tools can be used to help to restore and to increase resilience to supply chains. Internal risk management capabilities were developed during the COVID-19 pandemic that increased the company's external risk management capabilities.Practical implicationsThe findings provide valuable insights in ways to achieve improved competitive advantage and to build internal and external capabilities and competencies for developing more resilient and viable supply chains.Originality/valueTo the best of authors' knowledge, the model is unique and this work advances literature on supply chain resilience.

Publisher

Emerald

Subject

Transportation,Business and International Management

Reference103 articles.

1. Practical implications and future research agenda of lean manufacturing: a systematic literature review;Production Planning and Control,2020

2. A contingent resource-based view of proactive corporate environmental strategy;Academy of Management Review,2003

3. Estimating nonresponse bias in mail surveys;Journal of Marketing Research,1977

4. Supplier management and sustainable innovation in supply networks: an empirical study;Global Business Review,2018

5. Buyer-supplier relationship and trust theory in innovative green procurement practices;International Journal of Logistics Systems and Management,2018

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3