Abstract
PurposeMaterial-based computation has been recently introduced in architectural education, where parameters and rules related to materials are integrated into algorithmic thinking. The authors aim to identify affordances of material-based computation in terms of supporting the understanding of parametric design, informing the process of parametric form finding in an educational setup and augmenting student learning outcomes.Design/methodology/approachThe authors propose a material-informed holistic systems design framework for parametric form finding. The authors develop a pedagogical approach that employs material-based computation focusing on the interplay between the physical and the digital in a parametrically driven façade design exercise. The approach comprises two phases: (1) enabling physical exploration with different materials to arrive at the design logic of a panel prototype and (2) deducing embedded and controlled parameters, based on the interplay of materials and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity.FindingsThe results confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relations, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic and utilized parametric design to inform form finding as a bottom-up approach.Originality/valueMost precedent approaches developed to teach parametric design concepts in architectural education have focused on universal strategies that often result in fixating students on following standard blindly followed scripts and procedures, thus defying the purpose of a bottom-up form finding framework. The approach expands the pedagogical strategies employed to address parametric design as a form finding process.
Subject
Urban Studies,Geography, Planning and Development,Architecture
Reference22 articles.
1. Creative design exploration by parametric generative systems in architecture;Middle East Technical University Journal of the Faculty of Architecture (METU JFA),2012
2. Imitation, iteration and improvisation: embodied interaction in making and learning;Design Studies,2015
3. Inclusive performance: efficiency versus effectiveness;Architectural Design,2008
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献