Performance analysis of locally recurrent neural networks

Author:

Cannas B.,Cincotti S.,Fanni A.,Marchesi M.,Pilo F.,Usai M.

Abstract

Many practical applications of neural networks require the identification of non‐linear deterministic systems or chaotic systems. In these cases the use of a network architecture known as locally recurrent neural network (LRNN) is often preferable in place of standard feedforward multi‐layer perceptron (MLP) networks, or of globally recurrent neural network. In this paper locally recurrent networks are used to simulate the behaviour of the Chua’s circuit that can be considered a paradigm for studying chaos. It is shown that such networks are able to identify the underlying link among the state variables of the Chua’s circuit. Moreover, they are able to behave like an autonomous Chua’s double scroll, showing a chaotic behaviour of the state variables obtainable through a suitable circuit elements choice.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference16 articles.

1. Back, A.D. and Tsoi, A.C. (1991, “FIR and IIR synapses, a new neural network architecture for time series modelling”, Neural Computation, Vol 3, Massachusetts Institute of Technology, Cambridge, pp. 375‐85.

2. Back, A.D. and Tsoi, A.C. (1993, “A simplified gradient algorithm for IIR synapse multilayer perceptrons”, Neural Computation, Vol 5, Massachusetts Institute of Technology, Cambridge, pp. 456‐62.

3. Back, A.D., Wan, E.A., Lawrence, S. and Tsoi, A.C. (1991, “A unifying view of some training algorithms for multilayer perceptrons with FIR filter synapses”, Neural Computation, Vol 8.1, MIT.

4. Campolucci, P., Piazza, F. and Uncini, A. (1995, “On‐line learning algorithms for neural networks with IIR synapses”, Proceedings of IEEE International Conference on Neural Networks ICNN‐95, Perth

5. Campolucci, P., Piazza, F. and Uncini, A. (1996, “Causal backpropagation through time for locally recurrent neural networks”, Proceedings of ISCAS‐96, IEEE International Symposium on Circuit and Systems, Atlanta, GA

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seizmološki hazardi i mogućnost odgovora - studija slučaja humanitarna katastrofa u Nepalu;Vojno delo;2018

2. Modelling and simulation with neural and fuzzy‐neural networks of switched circuits;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2003-06

3. Neural reconstruction of Lorenz attractors by an observable;Chaos, Solitons & Fractals;2002-07

4. Neural characterization of wire bundles multiconductor transmission lines;IEEE Transactions on Magnetics;2002-03

5. Modelling Chaos with Neural Networks;Nonlinear Dynamics and Control in Process Engineering — Recent Advances;2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3