A novel approach for exploring channel dependence of consumers' latent shopping intent and the related behaviors by visualizing browsing patterns

Author:

Ho Hei-FongORCID

Abstract

PurposeThis study is to propose a more effective and efficient analytic methodology based on within-site clickstream associated with path visualization to explore the channel dependence of consumers' latent shopping intent and the related behaviors, with which in turn to gain insight concerning the interactivity between webpages.Design/methodology/approachThe primary intention of the research is to design and develop a more effective and efficient approach for exploring the consumers' latent shopping intent and the related behaviors from the clickstream data. The proposed methodology is to use text-mining package, consisting of the combination of hierarchical recurrent neural networks and Hopfield-like neural network equipped with Laplacian-based graph visualization to visualize the consumers' browsing patterns. Based on the observed interactivity between webpages, consumers' latent shopping intent and the related behaviors can be understood.FindingsThe key finding is to evidence that consumers' latent shopping intent and related behaviors within website depend on channels the consumers click through. The accessing consumers through channels of paid search and display advertising are identified and categorized as goal-directed and exploratory modes, respectively. The results also indicate that the effect of the content of webpage on the consumer's purchase intent varies with channels. This implies that website optimization and attribution of online advertising should also be channel-dependent.Practical implicationsThis is important for the managerial and theoretical implications: First, to uncover the channel dependence of consumer's latent shopping intent and browsing behaviors would be helpful to the attribution of the online advertising for the sales promotion. Second, in the past, webmasters did not understand users' preferences and make decisions of reorganization purely on the user's browsing path (sequential page view) without appraising psychological perspective, that is, user's latent shopping intent.Originality/valueThis study is the first to explore the channel dependences of consumer's latent shopping intent and the related browsing behaviors through within-site clickstream associated with path visualization. The findings are helpful to the attribution of the online advertising for the sales promotion and useful for webmasters to optimize the effectiveness and usability of their websites and in turn promote the purchase decision.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference55 articles.

1. A model of website browsing behavior estimated on clickstream data;Journal of Marketing Research,2003

2. Click here for Internet insight: advances in clickstream data analysis in marketing;Journal of Interactive Marketing,2009

3. Modeling the clickstream: implications for web-based advertising efforts;Marketing Science,2003

4. Laplacian-based dynamic graph visualization;IEEE Pacific Visualization Symposium,2015

5. Facilitating effective user navigation through website structure improvement;IEEE Transactions on Knowledge and Data Engineering,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3