Numerically framing the impact of magnetic field on nanofluid flow over a curved stretching surface with convective heating

Author:

Das Sanatan,Ali Akram,Jana Rabindra Nath

Abstract

Purpose Outstanding features such as thermal conductivity and superior electrical conductivity of nanofluids unfold a new window in the context of their extensive applications in engineering and industrial domains. The purpose of this study to simulate numerically the magneto-nanofluid flow and heat transfer over a curved stretching surface. Heat transport is explored in the presence of viscous dissipation. At the curved surface, the convective boundary condition is adopted. Three different nanoparticles, namely, copper, aluminium oxide and titanium dioxide are taken into consideration because of easily available in nature. Design/methodology/approach The basic flow equations are framed in terms of curvilinear coordinates. The modelled partial differential equations are transformed into a system of non-linear ordinary differential equations by means of appropriate similarity transformation. The subsequent non-linear system of equations is then solved numerically by using the Runge–Kutta–Felhberg method with the shooting scheme via bvp4c MATLAB built-in function. Impacts of various physical parameters on velocity, pressure and temperature distributions, local skin-friction coefficient, local Nusselt number and wall temperature are portrayed through graphs and tables followed by a comprehensive debate and physical interpretation. Findings Graphical results divulge that augmenting values of the magnetic parameter cause a decline in velocity profiles and stream function inside the boundary layer. The magnitude of the pressure function inside the boundary layer reduces for higher estimation of curvature parameter, and it is also zero when the curvature parameter goes to infinity. Furthermore, the temperature is observed in a rising trend with growing values of the magnetic parameter and Biot number. Practical implications This research study is very pertinent to the expulsion of polymer sheet and photographic films, metallurgical industry, electrically-conducting polymer dynamics, magnetic material processing, rubber and polymer sheet processing, continuous casting of metals, fibre spinning, glass blowing and fibre, wire and fibre covering and sustenance stuff preparing, etc. Originality/value Despite the huge amount of literature available, but still, very little attention is given to simulate the flow configuration due to the curved stretching surface with the convective boundary condition. Very few papers have been examined on this topic and found that its essence inside the boundary layer is not any more insignificant than on account of a stretching sheet. A numerical comparison with the published works is conducted to verify the accuracy of the present study.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3