Application of grey systems in predicting the degree of cotton spider mite infestations

Author:

Wang Shouhui,Dai Jianguo,Zhao Qingzhan,Cui Meina

Abstract

Purpose Many factors affect the emergence and development of crop diseases and insect pests. Traditional methods for investigating this subject are often difficult to employ and produce limited data with considerable uncertainty. The purpose of this paper is to predict the annual degree of cotton spider mite infestations by employing grey theory. Design/methodology/approach The authors established a GM(1,1) model to forecast mite infestation degree based on the analysis of historical data. To improve the prediction accuracy, the authors modified the grey model using Markov chain and BP neural network analyses. The prediction accuracy of the GM(1,1), Grey-Markov chain, and Grey-BP neural network models was 84.31, 94.76, and 96.84 per cent, respectively. Findings Compared with the single grey forecast model, both the Grey-Markov chain model and the Grey-BP neural network model had higher forecast accuracy, and the accuracy of the latter was highest. The improved grey model can be used to predict the degree of cotton spider mite infestations with high accuracy and overcomes the shortcomings of traditional forecasting methods. Practical implications The two new models were used to estimate mite infestation degree in 2015 and 2016. The Grey-Markov chain model yielded respective values of 1.27 and 1.15, whereas the Grey-BP neural network model yielded values 1.4 and 1.68; the actual values were 1.5 and 1.8. Originality/value The improved grey model can be used for medium- and long-term predictions of the occurrence of cotton spider mites and overcomes problems caused by data singularity and fluctuation. This research method can provide a reference for the prediction of similar diseases.

Publisher

Emerald

Reference41 articles.

1. A forecasting method of forest pests based on the rough set and PSO-BP neural network;Neural Computing and Applications,2014

2. Study on forecasting Chongqing city urban construction land scale based on grey theory and BP neural network;Acta Agriculturae Jiangxi,2011

3. Spectrum characteristics of cotton single leaf infected by verticillium wilt and estimation on severity level of disease;Scientia Agricultura Sinica,2007

4. Grain production prediction in Qingdao city based on Grey-Markov model;Computer Simulation,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3