A clustering approach for data quality results of research information systems

Author:

Edris Abadi Reza,Ershadi Mohammad Javad,Niaki Seyed Taghi Akhavan

Abstract

Purpose The overall goal of the data mining process is to extract information from an extensive data set and make it understandable for further use. When working with large volumes of unstructured data in research information systems, it is necessary to divide the information into logical groupings after examining their quality before attempting to analyze it. On the other hand, data quality results are valuable resources for defining quality excellence programs of any information system. Hence, the purpose of this study is to discover and extract knowledge to evaluate and improve data quality in research information systems. Design/methodology/approach Clustering in data analysis and exploiting the outputs allows practitioners to gain an in-depth and extensive look at their information to form some logical structures based on what they have found. In this study, data extracted from an information system are used in the first stage. Then, the data quality results are classified into an organized structure based on data quality dimension standards. Next, clustering algorithms (K-Means), density-based clustering (density-based spatial clustering of applications with noise [DBSCAN]) and hierarchical clustering (balanced iterative reducing and clustering using hierarchies [BIRCH]) are applied to compare and find the most appropriate clustering algorithms in the research information system. Findings This paper showed that quality control results of an information system could be categorized through well-known data quality dimensions, including precision, accuracy, completeness, consistency, reputation and timeliness. Furthermore, among different well-known clustering approaches, the BIRCH algorithm of hierarchical clustering methods performs better in data clustering and gives the highest silhouette coefficient value. Next in line is the DBSCAN method, which performs better than the K-Means method. Research limitations/implications In the data quality assessment process, the discrepancies identified and the lack of proper classification for inconsistent data have led to unstructured reports, making the statistical analysis of qualitative metadata problems difficult and thus impossible to root out the observed errors. Therefore, in this study, the evaluation results of data quality have been categorized into various data quality dimensions, based on which multiple analyses have been performed in the form of data mining methods. Originality/value Although several pieces of research have been conducted to assess data quality results of research information systems, knowledge extraction from obtained data quality scores is a crucial work that has rarely been studied in the literature. Besides, clustering in data quality analysis and exploiting the outputs allows practitioners to gain an in-depth and extensive look at their information to form some logical structures based on what they have found.

Publisher

Emerald

Subject

Library and Information Sciences,General Computer Science

Reference35 articles.

1. Improving the data quality in the research information systems,2019

2. Data quality strategy selection in CRIS: using a hybrid method of SWOT and BWM;Informatica,2021

3. Data quality measures and data cleansing for research information systems,2019

4. Analyzing data quality issues in research information systems via data profiling;International Journal of Information Management,2018

5. Data measurement in research information systems: metrics for the evaluation of data quality;Scientometrics,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Powered Data Governance: A Cutting-Edge Method for Ensuring Data Quality for Machine Learning Applications;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3