Memory features of water cyclically treated with magnetic field

Author:

Azoulay Jacob

Abstract

Purpose This paper aims to study the properties of cyclically treated pure water in magnetic fields and its comparison with pure untreated water. Design/methodology/approach The magnetic treatment was carried out using a static permanent magnetic field and alternating electromagnetic field. We have measured the magnetic effect on the rising level of the water in capillary tubes and the relaxation time for restoration after removing the magnetic field. The dependence on the magnetic field intensity and on the cyclical time treatments was investigated and discussed. The results of magnetization by static field and electromagnetic field were compared and discussed. It is well known that the clustering structure of hydrogen-bonded chains and polarization effects of water molecules are enhanced after magnetization. Therefore, each experimental series was followed by a “memory” test, the results of which enabled us to have some insights into the molecular and hydrogen bonds of water. Findings It was found that water remembers and keeps the impact of its passing through a magnetic field for several hours and also that many mechanical features were changed under cyclical treatment of a magnetic field.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference6 articles.

1. From anomalies in neat liquid to structure, dynamics and function in the biological world;Chemical Physics Letters,2012

2. Basic water treatment,2002

3. Making water levitate;Nature,1998

4. Investigation of changes in properties of water under the action of a magnetic field;Science in China Series G: Physics, Materials and Astronomy,2008

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3