Cloud-based big data framework towards strengthening disaster risk reduction: systematic mapping

Author:

Mahrin Mohd Naz’ri,Subbarao Anusuyah,Chuprat Suriayati,Abu Bakar Nur Azaliah

Abstract

Purpose Cloud computing promises dependable services offered through next-generation data centres based on virtualization technologies for computation, network and storage. Big Data Applications have been made viable by cloud computing technologies due to the tremendous expansion of data. Disaster management is one of the areas where big data applications are rapidly being deployed. This study looks at how big data is being used in conjunction with cloud computing to increase disaster risk reduction (DRR). This paper aims to explore and review the existing framework for big data used in disaster management and to provide an insightful view of how cloud-based big data platform toward DRR is applied. Design/methodology/approach A systematic mapping study is conducted to answer four research questions with papers related to Big Data Analytics, cloud computing and disaster management ranging from the year 2013 to 2019. A total of 26 papers were finalised after going through five steps of systematic mapping. Findings Findings are based on each research question. Research limitations/implications A specific study on big data platforms on the application of disaster management, in general is still limited. The lack of study in this field is opened for further research sources. Practical implications In terms of technology, research in DRR leverage on existing big data platform is still lacking. In terms of data, many disaster data are available, but scientists still struggle to learn and listen to the data and take more proactive disaster preparedness. Originality/value This study shows that a very famous platform selected by researchers is central processing unit based processing, namely, Apache Hadoop. Apache Spark which uses memory processing requires a big capacity of memory, therefore this is less preferred in the world of research.

Publisher

Emerald

Subject

General Medicine

Reference43 articles.

1. Big data analytics framework for natural disaster management in Malaysia,2017

2. Applications of big data analytics trends, issues, and challenges,2018

3. A review on applications of big data for disaster management,2017

4. Evidence relating to object-oriented software design: a survey,2007

5. Perspectives for VHR big data image processing and analytics toward a dedicated framework for major disaster and environment monitoring from space,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3