Study on the lubrication performance of the pitcher plant–like textured surface with various parameters

Author:

Zhang Dongya,Gao Yanping,Wu Pengju,Zhang Yanchao,Wang Liping

Abstract

Purpose This paper aims to enhance lubrication performance of the pitcher plant–like textured surface with various parameters. Design/methodology/approach A pitcher plant–like structure surface is fabricated on the copper alloy, and the lubrication performance of the pitcher plant–like structure with various parameters is evaluated. In addition, the pressure distribution and oil film load capacity of the pitcher plant–like surface are simulated based on Navier–Stokes equations. Findings When the direction of motion aligns with the pitcher plant–like structure, the friction coefficient remains lower than that of the nontextured surface, and it exhibits a decreasing trend with the increasing of the texture width and spacing distance; the lowest friction coefficient (0.04) is achieved with B = 0.3 mm, L = 1.0 mm and θ = 45°, marking a 75% reduction compared to the nontextured surface. Simulation results demonstrate that with the increase in texture width and spacing distance, the oil film load-bearing capacity demonstrates an increasing trend. Originality/value Bionic pitcher plants are prepared on the copper alloy to improve the lubrication performance and wear resistance. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0119/

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3