Tribological performance of a surface textured meso scale air bearing

Author:

Hingawe Nilesh D.,Bhore Skylab P.

Abstract

Purpose The purpose of this study is to improve the tribological performance of meso scale air journal bearing by adopting texture on the bearing surface. Design/methodology/approach The present study is based on numerical analysis. The detailed numerical investigation is carried out using a fluid flow based thin-film model in COMSOL 5.2 software. Findings The influence of texture design parameters: geometry (shape, orientation and slender ratio), and position on the tribological performance of meso scale air journal bearing is investigated. It is found that texture shape has a strong influence on the tribological characteristics such as load capacity and friction coefficient of the bearing. Slender texture improves the load capacity, but it has a negligible effect on the reduction of friction coefficient. In contrast, texture orientation is found to be insignificant for both increasing load capacity and decreasing friction coefficient. Furthermore, the maximum improvement in load capacity is obtained for partially textured bearing, but the minimum friction coefficient is achieved for full texturing. Originality/value The present study investigates the influence of texture design parameters viz geometry (shape, orientation and slender ratio), and position on the tribological performance of meso scale air journal bearing.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference27 articles.

1. A hydrodynamic laser surface-textured gas mechanical face seal;Tribology Letters,2010

2. A laser surface textured journal bearing;Journal of Tribology,2012

3. Modeling of surface texturing in hydrodynamic lubrication;Friction,2013

4. Parametric study of texturing in convergent bearings;Tribology International,2012

5. A critical assessment of surface texturing for friction and wear improvement;Wear,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3