Author:
Yue Luo,Meng Yan,Lee Eunji,Bai Pengpeng,Pan Yingzhuo,Wei Peng,Cheng Jie,Meng Yonggang,Tian Yu
Abstract
Purpose
The incorporation of phosphide additives is regarded as a highly effective strategy for enhancing the lubricative qualities of base oils. This study aims to assess the lubrication behavior and efficacy of various phosphide additives in polyethylsiloxane (PES) through the employment of the Schwingum Reibung Verschleiss test methodology, across a temperature range from ambient to 300°C.
Design/methodology/approach
PES demonstrated commendable lubrication capabilities within the Si3N4/M50 system, primarily attributable to the Si-O frictional reaction film at the interface. This film undergoes disintegration as the temperature escalates, leading to heightened wear. Moreover, the phosphide additives were found to ameliorate the issues encountered by PES in the Si3N4/M50 system, characterized by numerous boundary lubrication failure instances. A chemical film comprising P-Fe-O was observed to form at the interface; however, at elevated temperatures, disintegration of some phosphide films precipitated lubrication failures, as evidenced by a precipitous rise in the coefficient of friction.
Findings
The results show that a phosphide reactive film can be formed and a reduction in wear rate is achieved, which is reduced by 64.7% from 2.98 (for pure PES at 300°C) to 1.05 × 10–9 μm3/N m (for triphenyl phosphite at 300°C).
Originality/value
The data derived from this investigation offer critical insights for the selection and deployment of phosphide additives within high-temperature lubrication environments pertinent to PES.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0139/