Effect of laser scanning speed on microstructure and corrosive-wear performance of Ni-60%WC coating in Wusu mine water

Author:

Chuang He,Fan Wang,Zhicheng Liu,Dejun Kong

Abstract

Purpose The purpose of this study is to investigate the effect of laser scanning speed (LSS) on the corrosive-tribological performance of Ni-60%WC coating in Wusu mine water, which was beneficial to improve the friction–wear performance of cylinder liner on water injection pump. Design/methodology/approach Ni-60%WC coatings were fabricated on 45 steel by laser cladding, and the microstructure and tribological performance was analyzed using a super depth of field microscope and ball-on-plate friction tester, and the wear mechanism was also discussed. Findings At room temperature (RT, 25 ± 2 °C), the average coefficients of friction of substrate and Ni-60%WC coatings fabricated at the LSS of 6, 10, 12 and 14 mm/s are 0.48 ± 0.08, 0.23 ± 0.01, 0.21 ± 0.05, 0.22 ± 0.02 and 0.25 ± 0.04, respectively, and the corresponding wear rates are 8.755 × 104, 4.525 × 103, 1.539 × 103, 1.957 × 103 and 2.743 × 103 µm3·s–1·N–1, respectively, showing that the coating fabricated at the LSS of 10 mm/s has best friction reduction and wear resistance. The wear mechanism of Ni-60%WC coating is abrasive wear, fatigue wear and oxidative wear, which is resulted from the WC particles with the high-hardness. Originality/value Ni-60%WC coatings were first applied for cylinder liner, and the effect of laser scanning speed on its tribological performance was investigated.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3