Experimental study on the effect of pressure and flow rate on cavitation in a poppet throttle valve

Author:

Zhang Jian,Luo Tingting

Abstract

Purpose The purpose of this paper is to study the variation of cavitation scale with pressure and flow in poppet throttle valve, to obtain the cavitation scale under pressure and flow conditions and to provide experimental support for the research of suppressing throttle valve cavitation and cavitation theory. Design/methodology/approach A hydraulic cavitation platform was set up, a valve was manufactured with highly transparent PMMA material and a high-speed camera was used to observe the change in cavitation scale. Findings Through experiments, it is found that the pressure difference between inlet and outlet of throttle valve affects the cavitation scale, and the more the pressure difference is, the easier the cavitation will be formed. Under the condition of small pressure difference, the cavitation is not obvious and reducing the pressure difference can effectively suppress the cavitation; the flow rate also affects the cavitation scale, the smaller the flow rate, the more difficult the cavitation will be formed and the lower the flow rate, the more the cavitation will be suppressed. Research limitations/implications Because of the magnification factor of the high-speed camera lens, the morphology of smaller bubbles cannot be observed in this study, and the experimental conditions need to be improved in the follow-up study. Originality/value This study can provide experimental support for the study of throttle valve cavitation suppression methods and cavitation theory.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference15 articles.

1. Suppression of squeal noise excited by the pressure pulsation from the flapper-nozzle valve inside a hydraulic energy system;Energies,2018

2. Experimental investigation on noise of cavitation nozzle and its chaotic behavior;Chinese Journal of Mechanical Engineering,2013

3. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2017

4. Investigation of cavitation near the orifice of hydraulic valves;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2006

5. Effects of internal structure on cavitating noise of hydraulic relief valve;Chinese Journal of Mechanical Engineering,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3