Preparation and tribological properties of MoS2/graphite composite coatings modified by La2O3

Author:

Qiu Ming,Zhang Rui,Li Yingchun,Du Hui,Pang Xiao Xu

Abstract

Purpose The MoS2/graphite composite coatings modified by La2O3 through spraying technique were successfully prepared on the inner rings of spherical plain bearings. As a comparison, unmodified coatings were also prepared. This paper aims to study the La-modified MoS2/graphite composite coating experimentally and improve the tribological performance of self-lubricating spherical plain bearings. Design/methodology/approach The performance of La2O3 toward the friction coefficient, temperature rise and wear rate of the coatings was studied by a self-made tribo-tester under different swing cycles. And the texture, surface morphology and element composition of the coatings were characterized by scanning electron microscope, energy dispersive spectroscopy and X-ray diffractometry. Findings The additives La2O3 refined the coatings’ microstructure and improved the tribological properties of the coatings. The oxidation of Mo + 4 to Mo + 6 was effectively inhibited. And the amount of abrasive grains, peeling pits and local cracks on the coatings surface decreased and homogeneous lubricating films formed, which were attributed to the existence of La2O3. The wear mechanisms of unmodified coatings were severe abrasive wear, adhesive wear and delamination wear. However, it exhibited superior wear resistance of the La-modified coatings to unmodified coatings, presenting slight abrasive wear and adhesive wear. The service life of bearings was prolonged under the protection of the modified coatings. Originality/value The paper proposed a new modified MoS2/Graphite composite coating for the self-lubricating spherical plain bearings. The investigation on the friction, wear and temperature increase behaviors and the wear mechanisms of the coatings are beneficial to prolonging the service life of the self-lubricating spherical plain bearings.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3