Investigation on the lubrication performance of different carbon nanoparticles for titanium alloy

Author:

Yang Ye,Luan Hao,Tian Yaru,Si Lina,Yan Hongjuan,Liu Fengbin

Abstract

Purpose This study aims to develop a high-performance nanofluid that can be used in titanium alloys machining. Titanium alloys are difficult-to-cut materials and difficult to be lubricated. This study explored the lubrication performance of various carbon nanoparticles in water-based lubricants for titanium alloys. Design/methodology/approach The lubricating and antiwear properties of the developed cutting fluid were tested by a tribo-tester. The lubricant performance was evaluated through friction coefficient, wear volume and surface quality. The lubrication mechanism was analyzed through surface morphology, wettability and bonding analysis. Findings The lubricating performance of four kinds of carbon nanoparticles on titanium alloys was tested and the results showed that single-layer graphene had the smallest COF and wear volume. The interaction between nanoparticles and debris was an important factor that influenced the lubrication performance of nanoparticles for titanium alloy. Moreover, the hybrid nanofluid with graphene and spherical graphite in a ratio of 1:2 achieved a balance between lubricating performance and price, making it the optimal choice. Practical implications The developed lubricant containing carbon nanoparticles that can lubricate titanium alloys effectively has great potential in machining titanium alloy as a high-performance cutting fluid in the future. Originality/value This paper fulfills an identified need for water-based lubricant for titanium alloys considering the bad tribological properties. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0124/

Publisher

Emerald

Reference29 articles.

1. Graphene: a new emerging lubricant;Materials Today,2014

2. Convective transport in nanofluids;Journal of Heat Transfer,2005

3. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants;Tribology International,2019

4. The rise of graphene;Nature Materials,2007

5. Jansson, N. (2021), “Carbon nanostructures as lubricant additives ”, (Master's thesis, NTNU).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3