Evaluation of the tribological performance of the green hBN nanofluid on the friction characteristics of AISI 316L stainless steel

Author:

Akincioğlu Sıtkı,Şirin Şenol

Abstract

Purpose The purpose of this study is to investigate the effect of new green hexagonal boron nitride (hBN) nanofluid on AISI 316L stainless friction coefficient, wear resistance and wear using a ball on disc tester. Design/methodology/approach Nanofluids were prepared by adding hBN nanoparticles with two-step method to the vegetable-based oil at 0.50 vol%. Before the experiments, hBN nanofluid viscosity, pH and thermal conductivity specifications were determined. Friction tests of AISI 316L stainless steel were performed under 2 N, 5 N and 8 N loads at 400 rpm using a ball-on-disc test device under dry, oil and hBN conditions. Coefficient of friction, wear profile, surface integrity and wear mechanisms were chosen as performance criteria. Findings The friction coefficient values obtained under the oil and hBN test conditions with the 8 N load were, respectively, 72.46% and 77.64% lower than those obtained under dry test conditions. hBN nanofluid performed better on surface topography, and especially wear, compared to the dry and oil test conditions. Practical implications The aim of this study was to determine the best tribological performance of the hBN nanofluid on AISI 316L stainless steel used in orthopedic applications. Originality/value The paper is a study investigating the effect of hBN nanoparticle additive in vegetable-based oil on friction and wear performance of AISI 316L stainless steel. It is an original paper and is not published elsewhere.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3