Nonlinear dynamic analysis of multiple grooved water-lubricated journal bearings using attenuation rate interpolation method

Author:

Li Qiang,Liu Qinglei,Wang Yujun,Zhang Shuo,Du Yujing,Li Bin,Xu Wei-Wei

Abstract

Purpose The stringent requirements for environmental protection have induced the extensive applications of water-lubricated journal bearings in marine propulsion. The nonlinear dynamic analysis of multiple grooved water-lubricated bearings (MGWJBs) has not been fully covered so far in the literature. This study aims to conduct the nonlinear dynamic analysis of the instability for MGWJBs. Design/methodology/approach An attenuation rate interpolation method is proposed for the determination of the critical instability speed. Based on a structured mesh movement algorithm, the transient hydrodynamic force model of MGWJBs is set up. Furthermore, the parameters’ analysis of nonlinear instability for MGWJBs is conducted. The minimum water film thickness, side leakage, friction torque and power loss of friction are fully analyzed. Findings With the increase of speed, the journal orbits come across the steady state equilibrium motion, sub-harmonic motion and limit circle motion successively. At the limit circle motion stage, the orbits are much larger than that of steady state equilibrium and sub-harmonic motion. The critical instability speed increases when the spiral angle decreases or the groove angle increases. The minimum water film thickness peak is at the rotor speed of 4,000 r/min for the MGWJB with Sa = 0°. As rotor speed increases, the side leakage decreases slightly while the friction torque and the power loss of friction increase gradually. Originality/value Present research provides a beneficial reference for the dynamic mechanism analysis and design of MGWJBs.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference28 articles.

1. Three-dimensional thermohydrodynamic investigation on the microgroove textures in the main bearing of internal combustion engine for tribological performances;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2020

2. Film pressure distribution in water-lubricated rubber journal bearings;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2014

3. A comparative linear and nonlinear dynamic analysis of com-pliant cylindrical journal bearings;Mechanism and Machine Theory,2013

4. Numerical analysis of turbocharger’s bearing using dynamic mesh;Journal of Applied Fluid Mechanics,2016

5. An extended reynold equation applicable to high reduced reynolds number operation of journal bearings;Tribology International,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3