Low friction bio-inspired polydopamine/polytetrafluoroethylene coating performance in hydrodynamic bearings

Author:

Rutkevičius Marius,Dong Jimmy,Tremelling Darren,Viertel Julia,Beckford Samuel

Abstract

Purpose Low friction polymer coatings able to withstand high loadings and many years of continuous operation are difficult to formulate at low cost, but could find many applications in industry. This study aims to analyze and compare friction and wear performance of novel polydopamine/polytetrafluoroethylene (PDA/PTFE) and traditional tin Babbitt coatings applied to an industrial journal bearing. Design/methodology/approach This paper tested PTFE based coating, co-deposited with PDA, a biopolymer allowing sea mussels to adhere to ocean rocks. This coating was deposited on flat steel substrates and on a curved cast iron hydrodynamic journal bearing surface. The flat substrates were analyzed with a tribometer and an optical microscope, while the coated bearing liners were tested in an industrial laboratory setting at different speeds and different radial loads. Findings PDA/PTFE coating showed 2-3 times lower friction compared to traditional tin Babbitt for flat substrates, but higher friction in the bearing liners. PDA/PTFE also showed considerable wear through coating delamination and abrasion in the bearing liners. Research limitations/implications Five future modifications to mitigate coating flaws are provided, which include modifications to coating thickness and its surface finish. Originality/value While the novel coating showed excellent results on flat substrates, coating performance in a large scale bearing was found to be poor. This study shows that coating preparation needs to be improved to avoid frictional losses and unwanted damage to bearings. We provide several routes that could improve coating performance in industrial applications.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3