A classification model for prediction of clinical severity level using qSOFA medical score

Author:

Olivia Diana,Nayak Ashalatha,Balachandra Mamatha,John Jaison

Abstract

Purpose The purpose of this study is to develop an efficient prediction model using vital signs and standard medical score systems, which predicts the clinical severity level of the patient in advance based on the quick sequential organ failure assessment (qSOFA) medical score method. Design/methodology/approach To predict the clinical severity level of the patient in advance, the authors have formulated a training dataset that is constructed based on the qSOFA medical score method. Further, along with the multiple vital signs, different standard medical scores and their correlation features are used to build and improve the accuracy of the prediction model. It is made sure that the constructed training set is suitable for the severity level prediction because the formulated dataset has different clusters each corresponding to different severity levels according to qSOFA score. Findings From the experimental result, it is found that the inclusion of the standard medical scores and their correlation along with multiple vital signs improves the accuracy of the clinical severity level prediction model. In addition, the authors showed that the training dataset formulated from the temporal data (which includes vital signs and medical scores) based on the qSOFA medical scoring system has the clusters which correspond to each severity level in qSOFA score. Finally, it is found that RAndom k-labELsets multi-label classification performs better prediction of severity level compared to neural network-based multi-label classification. Originality/value This paper helps in identifying patient' clinical status.

Publisher

Emerald

Subject

Library and Information Sciences,General Computer Science

Reference34 articles.

1. Quick sequential [sepsis-related] organ failure assessment (qSOFA) and St. John sepsis surveillance agent to detect patients at risk of sepsis: an observational cohort study;American Journal of Medical Quality,2018

2. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach;International Journal of Medical Informatics,2017

3. Predicting hospital mortality for ICU patients: time series analysis;Health Informatics Journal,2019

4. ICU mortality prediction: a classification algorithm for imbalanced datasets,2017

5. National early warning score (NEWS) as an emergency department predictor of disease severity and 90-day survival in the acutely dyspneic patient – a prospective observational study;Neurosurgery,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3