A global optimization method for a large number of variables (variant of Alienor method)

Author:

Konfé Balira O.,Cherruault Yves,Benneouala Titem

Abstract

PurposeTo use α‐dense curves to allow the transform of a multiple function into a single variable function in order to solve global optimization problems.Design/methodology/approachUse is made of the established Alienor method which has already been applied to biological and industrial processes. The problems tackled have a number of variables and the chosen optimization method is a variant of the Alienor method.FindingsA new method for solving global optimization problem, called the Alienor method is now the subject of many variants. In this paper, it was found that a new reducing transformation α‐dense in Rn was successful in solving this type of problem when associated to a functional depending on a large number of variables. The reducing transformation is very efficient and accurate.Research limitations/implicationsThis is a variant of the proven Alienor Method which has improved the resolution of global optimization problems. It showed that the reducing transformation has the advantage that a small calculation time is obtained even when the relevant series are slowly increasing. Further development of the method is anticipated.Practical implicationsProved very effective for obtaining the global optimum with good precision and very short calculation time for large numbers of variables. Can be performed on micro‐calculators.Originality/valueNew variant of proven method. Of interest in solution of concrete problems in biology and industry.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference9 articles.

1. Bendiab, O. and Cherruault, Y. (1995), “Divanu: a new method for global optimisation in dimension n”, International Journal of Bio‐Medical Computing, No. 38, pp. 177‐80.

2. Cherruault, Y. (1998), Modèles et Méthodes Mathématiques pour les Sciences du Vivant, P.U.F, Paris.

3. Cherruault, Y. (1999), Optimisation: Méthodes Locales et Globales, P.U.F, Paris.

4. Cherruault, Y. and Guillez, A. (1983), Une Méthode pour la Recherche du Minimun Global d'Une Fonctionnelle, C.R.A.S, Paris Vol. 296, Série I, pp. 175‐8.

5. Mora, G. and Cherruault, Y. (1999), “On the minimal length curves that densifies the square”, Kybernetes, Vol. 28 No. 819, pp. 1054‐64.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3