Numerical modelling of a slope stability test by means of porous media mechanics

Author:

Sanavia Lorenzo

Abstract

PurposeThe purpose of this paper is to present a finite‐element analysis of the initiation of a slope failure in a small‐scale laboratory test due to pore pressure variation. To this aim, a fully coupled multiphase model for saturated/partially saturated solid porous materials based on porous media mechanics is used.Design/methodology/approachThe slope is described as a three‐phase deforming porous continuum where heat, water and gas flow are taken into account. The gas phase is modelled as an ideal gas composed of dry air and water vapour. Phase changes of water, heat transfer through conduction and convection and latent heat transfer are considered. The independent variables are: solid displacements, capillary pressure, gas pressure and temperature. The effective stress state is limited by Drucker‐Prager yield surface for the sake of simplicity. Small strains and quasi‐static loading conditions are assumed.FindingsThe paper shows that the multiphase modelling is able to capture the main experimental observations such as the local failure zone at the onset of slope failure and the outflow appeared in that zone. It also allows understanding of the triggering mechanisms of the failure zone.Research limitations/implicationsThis work can be considered as a step towards a further development of a suitable numerical model for the simulation of non‐isothermal geo‐environmental engineering problems.Practical implicationsThe multiphysics approach looks promising for the analysis of the onset of landslides, provided that the constitutive models for the multiphase porous media in saturated/unsaturated conditions and the related mechanical and hydraulic properties are described with sufficient accuracy.Originality/valueElasto‐plastic thermo‐hydro‐mechanical modelling of the initiation of slope failure subjected to variation in pore pressure boundary condition.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3