Application hybrid grey dynamic model to forecasting compensatory control

Author:

Li Guo‐Dong,Yamaguchi Daisuke,Nagai Masatake

Abstract

PurposeThis paper aims to increase the manufacturing accuracy and quality of product by improving the prediction accuracy of forecasting compensatory control (FCC).Design/methodology/approachThe dynamic analysis model, which combines grey dynamic model with time series autoregressive integrated moving average (ARIMA) model is proposed. In addition, the Markov chain from stochastic process theory is applied to improve the prediction accuracy.FindingsThe proposed model is more accurate than ARIMA model and grey dynamic model.Originality/valueThe paper provides a viewpoint on FCC by using the combined methodology, which takes advantage of high predictable power of grey dynamic model and at the same time takes advantage of the prediction powers of ARIMA model and Markov chain.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference18 articles.

1. Box, G.E. and Jenkins, G.M. (1976), Times Series Analysis: Forecasting and Control, Holdan‐Day, San Francisco, CA.

2. Deng, J.L. (1982), “Control problems of grey systems”, Syst. Control Lett., Vol. 1 No. 5, pp. 288‐94.

3. Fei, Y.T., Gong, P. and Xu, Z.Y. (2001), “Application of grey theory in the correction of the identification parameters of the predicting model of dynamic measurement errors”, International Committee for Measurements and Instrumentations, pp. 371‐6.

4. Guo, R. and Love, E. (2005), “Fuzzy set‐valued and grey filtering statistical inferences on a system operation data”, J. Quality in Maintenance, Vol. 11 No. 3, pp. 267‐78.

5. Han, J. (2005), “Research on grey model of forecasting compensatory control”, paper presented at International Conference on Progress of Cutting and Grinding, pp. 617‐22.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3