Partitioning based reduced order modelling approach for transient analyses of large structures

Author:

Markovic Damijan,Ibrahimbegovic Adnan,Park K.C.

Abstract

PurposeThe purpose of this paper is to describe reduced order modelling based on dynamic flexibility approximation and applied to transient analyses.Design/methodology/approachThis work is based on a recently proposed flexibility‐based component modes synthesis (CMS) approach which was shown to be very efficient for solving large eigenvalue problems. The model reduction approach is based on partionning via the localized Lagrange multipliers method, which makes it very appropriate to handle coupled problems.FindingsIn particular, it is demonstrated in this paper how the utilised model reduction method can be applied only to one part of the structure and efficiently coupled to a full finite element model. The performance of the method is investigated on numerical examples of plate and 3D problems.Originality/valueThe proposed flexibility‐based CMS approach can be used as a very efficient tool for complex engineering structures under dynamic load where the mode superposition method applies. The efficiency of the computations is brought about by the model reduction.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3