Trigger for the occurrence of grain coarsening phenomenon of BS304S31 austenite stainless steel under small plastic strain at high temperature

Author:

Akiyama Masayoshi,Neishi Yutaka,Adachi Yoshitaka,Terada Kenjiro

Abstract

Observation by optical microscopy and EBSP have made it clear that the trigger for the grain coarsening phenomenon of austenite stainless steel BS304S31 may be the stacking faults concentrating selectively in a thin layer lying just beneath the grain boundary. When macroscopic plastic strain reached 6 percent, selective concentration of stacking faults was observed. When it reached 20 percent, the distribution of stacking faults became uniform in each grain. After these specimens were heated, concentration of stacking faults disappeared, and grain coarsening occurred at the point with 6 percent strain, but no grain coarsening occurred at the point with 20 percent strain. In order to investigate this concentration of stacking faults, an attempt was made to analyze the deformation in each crystal by using image‐based FEM. The result suggested that there is a possibility that plastic strain concentrates in the vicinity of the grain boundary when the macroscopic plastic strain is small.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3