Abstract
A model for the decohesion of aggregates of suspended particulate material in a binding matrix is developed. In the model cohesive zones which envelop each particle individually are introduced at the particulate/binder interface. During progressive loading, the deterioration of the cohesive zones is initiated if constraints placed on the microstress fields are violated. In order for the material behavior to be energetically admissible, the deterioration of the material at a point is in the form of a reduction of the elasticity tensor’s eigenvalues at that point. The material within the cohesive zones deteriorates until the constraints are met. In order to isolate and study the effects of interfacial deterioration, outside of the cohesive zones, the material is unaltered. Mathematical properties of the model, as well as physical restrictions, are discussed. Numerical simulations are performed employing the finite element method to illustrate the approach in three‐dimensional applications.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献