Analysing the voice of customers by a hybrid fuzzy decision-making approach in a developing country's automotive market

Author:

Amoozad Mahdiraji HannanORCID,Hafeez Khalid,Kord HamidrezaORCID,Abbasi Kamardi AliAsghar

Abstract

PurposeThis paper analyses the voice of customers (VoCs) using a hybrid clustering multi-criteria decision-making (MCDM) approach. The proposed method serves as an efficient tool for how to approach multiple decision-making involving a large set of countrywide customer complaints in the Iranian automotive sector.Design/methodology/approachThe countrywide data comprising 3,342 customer complaints (VoCs) were gathered. A total of seven determinant complaint criteria were identified in brainstorming sessions with three groups (six each) of experts employing the fuzzy Delphi method. The weights of these criteria were assigned by applying the fuzzy best–worst method (FBWM) to identify the severity of the complaints. Subsequently, the complaints were clustered into five categories with respective customer locations (province), car type and manufacturer using the K-mean method and further prioritised and ranked employing the fuzzy complex proportional assessment of alternatives (FCOPRAS) method.FindingsThe results indicated that the majority of complaints (1,027) from the various regions of the country belonged to one specific model of car made by a particular producer. The analyses revealed that only a few complaints were related to product quality, with the majority related to service and financial processes including delays in automobile delivery, delays in calculating monthly instalments, price variation, failure to provide a registration ( licence) and failure to supply the agreed product. The proposed method is an efficient way to solve large-scale multidimensional problems and provide a robust and reliable set of results.Practical implicationsThe proposed method makes it much easier for management to deal with complaints by significantly reducing their number. The highest-ranked complaints from customers of the car industry in Iran are those related to delivery time, price alternations, customer service support and quality issues. Surveying the list of complaints shows that paying attention to the four most voiced complaints can reduce them more than 54%. Management can make appropriate strategies to improve the production quality as well as business processes, thus producing a significant number of customer complaints.Originality/valueThis paper proposes a comprehensive approach to critically analyse the VoCs by combining qualitative and decision-making approaches including K-mean, FCOPRAS, fuzzy Delphi and FBWM. This is the first paper that analyses the VoCs in the automotive sector in a developing country’s context involving large-scale decision-making problem-solving.

Publisher

Emerald

Subject

Management Science and Operations Research,General Business, Management and Accounting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3