Benefits of formalized computational modeling for understanding user behavior in online privacy research

Author:

Schürmann TimORCID,Gerber Nina,Gerber Paul

Abstract

PurposeOnline privacy research has seen a focus on user behavior over the last decade, partly to understand and explain user decision-making and seeming inconsistencies regarding users' stated preferences. This article investigates the level of modeling that contemporary approaches rely on to explain said inconsistencies and whether drawn conclusions are justified by the applied modeling methodology. Additionally, it provides resources for researchers interested in using computational modeling.Design/methodology/approachThe article uses data from a pre-existing literature review on the privacy paradox (N = 179 articles) to identify three characteristics of prior research: (1) the frequency of references to computational-level theories of human decision-making and perception in the literature, (2) the frequency of interpretations of human decision-making based on computational-level theories, and (3) the frequency of actual computational-level modeling implementations.FindingsAfter excluding unrelated articles, 44.1 percent of investigated articles reference at least one theory that has been traditionally interpreted on a computational level. 33.1 percent of all relevant articles make statements regarding computational properties of human cognition in online privacy scenarios. Meanwhile, 5.1 percent of all relevant articles apply formalized computational-level modeling to substantiate their claims.Originality/valueThe findings highlight the importance of formal, computational-level modeling in online privacy research, which has so far drawn computational-level conclusions without utilizing appropriate modeling techniques. Furthermore, this article provides an overview of said modeling techniques and their benefits to researchers, as well as references for model theories and resources for practical implementation.

Publisher

Emerald

Subject

General Business, Management and Accounting,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3