Classifying online corporate reputation with machine learning: a study in the banking domain

Author:

Rantanen Anette,Salminen Joni,Ginter Filip,Jansen Bernard J.

Abstract

Purpose User-generated social media comments can be a useful source of information for understanding online corporate reputation. However, the manual classification of these comments is challenging due to their high volume and unstructured nature. The purpose of this paper is to develop a classification framework and machine learning model to overcome these limitations. Design/methodology/approach The authors create a multi-dimensional classification framework for the online corporate reputation that includes six main dimensions synthesized from prior literature: quality, reliability, responsibility, successfulness, pleasantness and innovativeness. To evaluate the classification framework’s performance on real data, the authors retrieve 19,991 social media comments about two Finnish banks and use a convolutional neural network (CNN) to classify automatically the comments based on manually annotated training data. Findings After parameter optimization, the neural network achieves an accuracy between 52.7 and 65.2 percent on real-world data, which is reasonable given the high number of classes. The findings also indicate that prior work has not captured all the facets of online corporate reputation. Practical implications For practical purposes, the authors provide a comprehensive classification framework for online corporate reputation, which companies and organizations operating in various domains can use. Moreover, the authors demonstrate that using a limited amount of training data can yield a satisfactory multiclass classifier when using CNN. Originality/value This is the first attempt at automatically classifying online corporate reputation using an online-specific classification framework.

Publisher

Emerald

Subject

Economics and Econometrics,Sociology and Political Science,Communication

Reference72 articles.

1. Dimensions of brand personality;Journal of Marketing Research,1997

2. Corporate identity, corporate branding and corporate reputations: reconciliation and integration;European Journal of Marketing,2012

3. Online and offline corporate brand images: do they differ?;Corporate Reputation Review,2007

4. Reputation and the corporate brand;Corporate Reputation Review,2004

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3